Lagrangian non-squeezing and a geometric inequality

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Foliated Squeezing Theorem for Geometric Modules

We prove a foliated control theorem for automorphisms of geometric modules. This is the analogue of a result for h-cobordism

متن کامل

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

A Geometric Inequality with Applications

In this paper, we present a new geometric inequality which involves an arbitrary point in the plane of a triangle. A simpler proof of a known inequality with one parameter is obtained by using our result. We also derive the famous Sondat fundamental triangle inequality from it. Mathematics subject classification (2010): 51M16.

متن کامل

A Study of Entanglement and Squeezing of

We study entanglement and squeezing of a cluster of spin systems under the influence of the two-axis countertwisting Hamiltonian. The squeezing parameters given by Wineland et al and also by Kitagawa et al. are chosen as the criteria of spin squeezing. The criterion of pairwise entanglement is chosen to be the concurrence and that of the bipartite entanglement the linear entropy. We also define...

متن کامل

A Weighted Geometric Inequality and Its Applications

A new weighted geometric inequality is established by Klamkin’s polar moment of inertia inequality and the inversion transformation, some interesting applications of this result are given, and some conjectures which verified by computer are also mentioned

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Zeitschrift

سال: 2013

ISSN: 0025-5874,1432-1823

DOI: 10.1007/s00209-013-1254-6